Robust estimation and variable selection in heteroscedastic linear regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust Estimation in the Heteroscedastic Linear

We study estiuultion of regression parameters in heteroscedastic linear models when the ntunber of parameters is large. The results

متن کامل

Robust Signed-Rank Variable Selection in Linear Regression

The growing need for dealing with big data has made it necessary to find computationally efficient methods for identifying important factors to be considered in statistical modeling. In the linear model, the Lasso is an effective way of selecting variables using penalized regression. It has spawned substantial research in the area of variable selection for models that depend on a linear combina...

متن کامل

Robust nonnegative garrote variable selection in linear regression

Robust selection of variables in a linear regression model is investigated. Many variable selection methods are available, but very few methods are designed to avoid sensitivity to vertical outliers aswell as to leverage points. The nonnegative garrotemethod is a powerful variable selection method, developed originally for linear regression but recently successfully extended to more complex reg...

متن کامل

Variable Selection in Single Index Quantile Regression for Heteroscedastic Data

Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic, due to its relevance in many scientific studies. The ubiquity of high dimensional data has led to a number of variable selection methods for linear/nonlinear QR models and, recently, for the single index quantile regression (SIQR) model. We propose a new algorithm for simult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics

سال: 2019

ISSN: 0233-1888,1029-4910

DOI: 10.1080/02331888.2019.1579215